пятница, 6 февраля 2015 г.

Турбокомпрессор

Теория наддува

Мощность, которую может развивать двигатель внутреннего сгорания (ДВС), зависит от количества воздуха и топлива, которые поступают в камеру сгорания. Таким образом, добиться увеличения мощности можно, увеличив одну из этих составляющих. Но повышать только лишь количество топлива совершенно бессмысленно, если пропорционально не увеличивать объем воздуха для его сгорания. Тем самым, одно из решений к повышению мощности силового агрегата автомобиля является принудительная подача воздуха. Сжатого воздуха.

Системы принудительной подачи (нагнетания) воздуха можно разделить на системы, работающие за счет энергии отработавших газов (турбонаддув, турбина или просто "турбо") и системы с механическим приводом (объемный турбокомпрессор, кулачковый компрессор, винтовой или суперчарджер).

Сила вторичной энергии

Первый турбонагнетатель использовавший энергию отработанных газов появился в 1905 году, его изобрел швейцарский инженер Альфред Бюши (Alfred Buchi).

Преимущества турбокомпрессорного двигателя:

Двигатель, оснащенный турбокомпрессором, обладает техническими преимуществами по сравнению с атмосферным (безнаддувным) двигателем.
  • Соотношение "масса/мощность" у двигателя с турбокомпрессором выше, чем у атмосферного двигателя.
  • Двигатель с турбокомпрессором лучше адаптирован к специфическим условиям эксплуатации (например, в высокогорье).
  • Турбокомпрессор обеспечивает лучшее сгорание топлива и как следствие, способствует снижению токсичных веществ в отработавших газах.
Если обобщить, то любой турбокомпрессор состоит из воздушного насоса (центробежного типа) и турбины, связанных между собой при помощи общей жесткой оси. Оба устройства вращаются в одном направлении и с единой скоростью. Энергия потока отработавших газов, которая в атмосферных двигателях не используется, здесь преобразуется в крутящий момент, который в свою очередь приводит в действие компрессор.


Схема работы турбины



То есть отработавшие газы, выходящие из цилиндров двигателя, именно благодаря высокой температуре и давлению, разгоняются до большой скорости, вступают в контакт с лопатками турбины, превращая кинетическую энергию в энергию вращения.

Это преобразование энергии сопровождается снижением температуры газов и их давления. Компрессор засасывает воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. При этом количество топлива, которое можно смешать с воздухом, легко увеличить, повысив тем самым заветную мощность.

Отсюда можно сделать первый вывод: частота вращения турбонагнетателя, использующего энергию отработанных газов напрямую не зависит от числа оборотов двигателя. Изначально увеличивается подача топлива, в следствии - энергия потока отработанных газов, затем только увеличиваются обороты турбины и давление нагнетаемого воздуха в цилиндры силового агрегата. Промежуток времени, до вывода в рабочий цикл турбины получил название порог срабатывания или турбояма.

Турбокомпрессоры завоевали популярность в дизельных грузовых и легковых автомобилях, тракторах, локомотивах и судах. Среди бензиновых автомобилей их можно встретить очень редко, так как они дают "прирост" лишь на некотором скоростном промежутке. В качестве примера можно привести Cord Model 812 (1937), Saab 99 Turbo (1977) и гоночные болиды Формулы-1.


Источники:
С.Б. Асташенко - "Турбокомпрессоры". Изд-во Автостиль, 2002г.
Г.М. Савельев, Е.Н. Зайченко - "Турбокомпрессоры и теплообменники наддувочного воздуха автомобильных двигателей". Изд-во Ярославль, 1983г.

Как это сделано - Турбокомпрессоры